TikZ is an extremely powerful tool, but it can be hard to get a grasp of. Here's a few examples of
drawing digital circuit diagrams using the
shapes.gates.logic
TikZ library. Each of these examples uses the
standalone.cfg
file introduced in
this
post.
\documentclass[tikz, border=1mm]{standalone}
\usetikzlibrary{arrows, shapes.gates.logic.US, calc}
\begin{document}
\begin{tikzpicture}
\node (x) at (0, 1) {$x$};
\node (y) at (0, 0) {$y$};
\node[not gate US, draw] at ($(x) + (0.8, 0)$) (notx) {};
\node[not gate US, draw] at ($(y) + (0.8, 0)$) (noty) {};
\node[or gate US, draw, rotate=0, logic gate inputs=nn] at ($(noty) + (1.5, 0.5)$) (xory) {};
\draw (x) -- (notx.input);
\draw (y) -- (noty.input);
\draw (notx.output) -- ([xshift=0.2cm]notx.output) |- (xory.input 1);
\draw (noty.output) -- ([xshift=0.2cm]noty.output) |- (xory.input 2);
\draw (xory.output) -- node[above]{$\bar x + \bar y$} ($(xory) + (1.5, 0)$);
\end{tikzpicture}
\end{document}
which produces
\documentclass[tikz, border=1mm]{standalone}
\usetikzlibrary{arrows, shapes.gates.logic.US, calc}
\tikzstyle{branch}=[fill, shape=circle, minimum size=3pt, inner sep=0pt]
\begin{document}
\begin{tikzpicture}
\node (x) at (0, 2) {$x$};
\node (y) at (0, 1) {$y$};
\node (z) at (0, 0) {$z$};
\node[not gate US, draw] at ($(x) + (0.8, 0)$) (notx) {};
\node[not gate US, draw] at ($(y) + (0.8, 0)$) (noty) {};
\node[nor gate US, draw, rotate=0, logic gate inputs=nnnn] at ($(noty) + (2, 0.085)$) (xory) {};
\draw (x) -- (notx.input);
\draw (y) -- (noty.input);
\path ($(notx.input) + (0.2, 0)$) -- coordinate (puntx) (x |- notx);
\draw (x) -- (puntx) node[branch] {} |- ($(notx.output) + (0.4, 0.4)$) |- (xory.input 1);
\draw (notx.output) -- ([xshift=0.2cm]notx.output) |- (xory.input 2);
\draw (noty.output) -- ([xshift=0.2cm]noty.output) |- (xory.input 3);
\draw (z) -| ($(noty.output) + (0.2, -0.5)$) |- (xory.input 4);
\draw (xory.output) -- node[above]{$\overline{x + \bar x + \bar y + z}$} ($(xory) + (3, 0)$);
\end{tikzpicture}
\end{document}
which produces
While not a very good circuit to diagram, it shows many of the capabilities of TikZ.
Just because it's useful and I have nowhere else to put it, here's how you graph functions with TikZ
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}
% axes
\draw[->](-3.5, 0) -- (4.2, 0) node[right] {$x$};
\draw[->](0, -pi) -- (0, 4.2) node[above] {$y$};
% graphs
\draw[scale=0.5, domain=-3:3, smooth, variable=\x, blue]
plot ({\x}, {\x*\x});
\draw[domain=-pi:pi, smooth, variable=\x, red]
plot ({\x}, {sin(deg(\x))});
\end{tikzpicture}
\end{document}
Something more advanced:
\documentclass[tikz]{standalone}
\usepackage{pgfplots}
\usetikzlibrary{patterns}
\begin{document}
\begin{tikzpicture}
% diagonal fill pattern
\pgfdeclarepatternformonly{north east lines wide}%
{\pgfqpoint{-1pt}{-1pt}}%
{\pgfqpoint{10pt}{10pt}}%
{\pgfqpoint{9pt}{9pt}}%
{
\pgfsetlinewidth{0.4pt}
\pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
\pgfpathlineto{\pgfqpoint{9.1pt}{9.1pt}}
\pgfusepath{stroke}
}
\begin{axis}[
grid=major,
axis lines=middle,
xmin=-1.75,
xmax=1.75,
ymin=-9,
ymax=2.5,
width = 14cm,
height = 8cm
]
\addplot[color=red, domain=-1.6:1.6] {x^2 + 2*x - 7};
%\addlegendentry{$x^2 + 2x - 7$}
\addplot+[
mark=none,
domain=-1:1,
pattern=north east lines wide,
pattern color=red!50!yellow
] {x^2 + 2*x - 7} \closedcycle;
\end{axis}
\end{tikzpicture}
\end{document}